Tô Thị Kim Hồng * , Lê Trương Duy Lam , & Nguyễn Minh Đức

* Correspondence: Tô Thị Kim Hồng

Main Article Content

Abstract

Based on the application of descriptive statistics and Box-Jenkins method, in this paper, unit root test and Granger causality test have been conducted for double logarithm and ARIMA models. This paper tries to figure out suitable models to forecast catfish exported volume from Vietnam to the USA market. With the time series data of UN-Comtrade and NOAA, the results reveal that the export quantity of Vietnam to the US will increase for one year followed by a little bit decrease but still higher than the recent quantity. Moreover, analyzing the different models, this paper suggests that ARIMA is the suit- able model for forcasting the exported quantity of Vietnam to the US market. Even though there is need for further research to have a more multi-perspective view of the forecast model, the result is a reference for policy makers, businessmen in case of export catfish
Keywords: Arima, catfish, demand model, export, forcast, Box-Jenkins

Article Details

References

Agrawal, S. (2015). A Study of Time Series Model for Forecasting of Boot in Shoe Industry. International Journal of Hybrid Information Technology, 8 (8), pp. 143-152.
Asche, F. and Wessells, C. R. (1997). On price indices in the almost ideal demand system. American Journal of Agricultural Economics, 79 (4), pp. 1182-1185.
Asteriou, D. and Hall, S. G. (2007). Applied Econometrics: A Modern Approach Using Eviews and Microfit, Revised Edition. Palgrave Macmillan. 5th Edition. ISBN-10: 0230506402. ISBN-13: 978-023050640.
Choudhury, A. and Jones, J. (2014). Crop yield prediction using time series models. Journal of Economics and Economic Education Research, 15 (3), p. 53.
Huq, A. S. M. A., and Arshad, F. M. (2010). Demand elasticities for different food items in Bangladesh. Journal of Applied Sciences, 10 (20), pp. 2369-2378.
Kastens, T. L. and Brester, G. W. (1996). Model selection and forecasting ability of theory-constrained food demand systems. American Journal of Agricultural Economics, 78 (2), pp. 301-312.
Lawer, E. A. (2016). Empirical Modeling of Annual Fishery Landings. Natural Resources, 7 (04), p. 193.
Mendelssohn, R. (1981). Using Box-Jenkins models to forecast fishery dynamics: identification, estimation, and checking. Fish Bull. (seattle), 78 (4), pp. 887-896.
Nerlove, M. L. (1958). Distributed Lags and the Estimation of Long-Run Supply and Demand Elasticities: Theoretical Considerations. Journal of Farm Economics, 40, pp. 301-311.

Nguyễn Sỹ Linh (2010). Tổng quan về phương pháp dự báo và khả năng áp dụng một số mô hình trong dự báo biến động tài nguyên và môi trường tại Việt Nam. Trang tin Viện chiến lược, Chính sách và Tài nguyên Môi trường, Số 2/2010.
Phạm Thành Thái (2013). Xây dựng mô hình hàm cầu sản phẩm cá hồi của Na Uy ở Việt Nam. Luận án tiến sỹ, Trường Đại học Nha Trang.
Sankar, T. J. (2011). Forecasting Fish Product Export in Tamilnadu. A Stochastic Model Approach. Recent Research in Science and Technology, 3 (7).
Senhadji, A. S., and Montenegro, C. E. (1999). Time series analysis of export demand equations: a cross-country analysis. IMF Economic Review, 46 (3), pp. 259-273.
Varian, H. R. (1978). Microeconomic analysis. WWNorton. 338.5 V299m 1978
Võ Văn Tài (2012). Dự báo sản lượng lúa Việt Nam bằng các mô hình toán học. Tạp chí Khoa học Tự nhiên, Đại học Cần Thơ, 23b. tr. 125-134.

Tey, Y. S., Shamsudin, M. N., Mohamed, Z., Abdullah, A. M. and Radam, A. (2008). Demand analyses of food in Malaysia: Effects of model specification and demographic variables. University Library of Munich, Germany.
Warangkhana, K. (2015). Forecasting the White Shrimp Litopenaeus Vannamei Prices. Journal of Srinakharinwirot Science. 31 (1).
Yang, S. R. and Koo, W. W. (1994). Japanese meat import demand estimation with the source differentiated AIDS model. Journal of Agricultural and Resource Economics, pp. 396-408.
Zheng, Z., Saghaian, S. and Reed, M. (2012). Factors affecting the export demand for US pistachios. International Food and Agribusiness Management Review, 15 (3), pp. 139-154.