Phung Anh Thu * , & Nguyen Vinh Khuong

* Correspondence: Phung Anh Thu (email: phunganhthu1990@gmail.com)

Main Article Content

Abstract

Highly transparent financial information will help users, especially investors, get useful information to make different investment decisions in order to benefit from the decisions which have great significance. With studied data from 80 delisted companies in the period 2012-2015, the study was conducted to provide evidence of the impact of red flags (financial ratios) on going concern. In the stock market of Vietnam. The finding results pointed out that some red flags having an impact on going concern and then recommendation is proposed to stakeholders.
Keywords: red flags, going concern, Z score, delisted firms, Vietnam

Article Details

References

Altman, E. I. and Hotchkiss, E. (2006). Corporate Financial Distress and Bankruptcy (Third edit), John Wiley and Sons.

Amaechi, P. and Nnanyereugo, V. (2013). Application of computed financial ratios in fraud detection modelling: a study of selected banks in Nige- ria. Asian Economic and Financial Review, 3 (11), p. 1405.

Arshad, R., Iqbal, M. and Omar, N. (2015). Predic- tion of business failure and fraudulent finan- cial reporting: Evidence from Malaysia. Indian Journal of Corporate Governance, 8 (1), pp. 34-53.

Dalnial, H., Kamaluddin, A., Sanisi, Z. M. and Khairuddin, K. S. (2014). Accountability in Financial Reporting: Detecting Fraudulent Firms. Procedia-Social and Behavioral Sciences, 145, pp. 61-69.

Dani, M., Dickson, P. and Sembilan, N. (2013). Can financial ratios explain the occurrence of fraudulent financial statements?. The 5th International Conference on Financial Crim- inology (ICFC) “Global Trends in Financial Crimes in the New Economies”.

Kaminski, A., Wetzel, S. and Guan, L. (2004). Can financial ratios detect fraudulent financial re- porting?. Managerial Auditing Journal, 19 (1), pp. 15-28.

Kirkos, E., Spathis, C. and Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications, 32 (4), pp. 995-1003.

Nia, H. (2015). Financial ratios between fraudulent and non-fraudulent firms: Evidence from Teh- ran Stock Exchange. Journal of Accounting and Taxation, 7 (3), pp. 38-44.

Trần Ngọc Phúc (2013). Phân tích chỉ số tài chinh để phát hiện gian lận, sai sót trong báo cáo tài chính của các doanh nghiệp niêm yết trên thị trường chứng khoán Việt Nam. Luận văn Thạc sĩ kinh tế, Trường Đại học Kinh tế Thành phố Hồ Chí Minh.

Person, O. (1995). Using financial statement data to identify factors associated with fraudulent financing reporting. Journal of Applied Business Research, 11 (3), pp. 38–46.

Spathis, C., Doumpos, M. and Zopounidis, C. (2002). Detecting falsified financial statements: a comparative study using multicriteria analysis and multivariate statistical techniques. Euro- pean Accounting Review, 11 (3), pp. 509-535.

Trần Thị Giang Tân (2009). Gian lận trên Báo cáo tài chính – Thực trạng và kiến nghị đối với các doanh nghiệp Việt Nam. Tạp chí Phát triển kinh tế, 7, tr. 41-47.

Tạ Thu Trang và Nguyễn Thị Hương (2013). Bàn về các yếu tố dẫn đến rủi ro có gian lận trong lập Báo cáo tài chính doanh nghiệp. Tạp chí Kinh tế và Phát triển, 196, tr. 57-63.

Ujal, M., Amit, P., Hiral, P., Rajen, P. (2012). De- tection of fraudulent financial statements in India: An exploratory study. Global Science Research Journals, 4, pp. 1-19

Zack, G. M. (2012). Financial Statement Fraud: Strategies for Detection and Investigation. John Wiley and Sons.