Le Manh *

* Correspondence: Le Manh (email: 453_lemanh@gmail.com)

Main Article Content

Abstract

In the internet environment computer network security is essential for network administrators. The detection and elimination of malware in computer software in the network is the daily work of network administrators. This paper proposes methods using machine learning principles (in specialized artificial intelligence) to perform malware detection in computer software.
Keywords: Malicious software, malware, behavioral software, virtual machine, malware database, SandBox, network security, machine learning

Article Details

References

1. Daisuke Inoue, Katsunari Yoshioka, Masashi Eto, Yuji Hoshizawa, Koji Nakao (2010), "Malware Behavior Analysis in Isolated Miniature Network for Revealing Malware's Network Activity", IEEE Xplore.

2. Dennis Distler (2011), Perfoming Behavioral Analysis of Malware, SANS Training.

3. Egele, M., Theodoor, S., Engin, K., & Christopher, K. (2010), "A Survey on Automated Dynamic Malware Analysis Techniques and Tools", ACM Computing Surveys, 1-49.

4. Jim Clausing (2009), "Building an Automated Behavioral Malware Analysis Environment using Open Source Software", SANS Institute InfoSec Reading Room, 18/6/2009.

5. Katsunari Yoshioka, Takahiro Kasama, and Tsutomu Matsumoto (2010), Sandbox Analysis with Controlled Internet Connection for Observing Temporal Changes of Malware Behavior, Yokohama National University, Yokohama, Japan.

6. Michael Sikorski, Andrew Honig (2011), Practical Malware Analysis, No Starch Press.

7. Roberto Sponchioni (2011), "Run-time Malware Analysis System", IT Security for the Next Generation International Cup 2011, Munich, Germany.

8. Konrad Rieck, Philipp Trinius, Carsten Willems and Thorsten Holz, 2011, "Automatic Analysis of Malware Behavior using Machine Learning", Journal of Computer Security, Volume 13, Number 4/2011, 639-668.

9. Philipp Trinius, Thorsten Holz, Konrad Rieck and Carsten Willems, 2010, "A malware Instruction Set for Behavior-Based Analysis", Sicherheit 2010 (Sicherheit, Schutz und Verlässlichkeit), 205216, Berlin, Germany.

10. Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Dussel, and Pavel Laskov, 2008, "Learning and Classification of Malware Behavior", Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 108-125, Berlin, Germany.

11. Nguyễn Việt Hùng (2012), Phương pháp phân tích và theo dõi hành vi mã độc trong môi trường mạng ảo cách ly, Luận án cao học tại Học viên Bưu chính – Viễn thông Khu vực phía Nam.

12. Lê Mạnh, Nguyễn Việt Hùng (2012), “Theo dõi hành vi mã độc trong môi trường mạng ảo cách ly”, Kỷ yếu hội thảo quốc gia lần thứ XV về CNTT: Một số vấn đề chọn lọc của CNTT và truyền thông, trang 443-446.

13. Báo SGGP ngày 19/02/2014, Các phát hiện virut máy tính The Mars của Kaspersky Lab.

14. http://malwr.com/

15. http://virustotal.com/

16. http://www.joesecurity.org/

17. http://www.threattrack.com

18. http://www.norman.com/security_center/security_tools/

19. http://www.bkav.com.vn/tin_tuc_noi_bat/-/view_content/content/tong-ket-tinh-hinh-virus-va-anninh-mang-nam-2011, Truy cập: 13/01/2012.

20. http://hanoimoi.com.vn/newsdetail/Cong-nghe/534610/an-ninh-mang-nam-2011-nhieu-dien-bienbat-thuong.htm, Truy cập: 30/12/2011.

21. http://anubis.iseclab.org/

22. http://cuckoobox.org/