Tran Thi Kim Nga * , Dao Duy Vinh , & Nguyen Dang Khoa

* Correspondence: Tran Thi Kim Nga (email: kimnga2510@gmail.com)

Main Article Content

Abstract

This study presents a automatic counting fish model to increase counting breeding fish efficiency at aquatic breeding supplying base. The model combines image processing techniques to identify and count fish and controlled by Raspberry artery board. Image processing program will recognize and count the fish in the tank by taking threshold method and looking for contour. The results show that this model can count 100 to 600 breeding in the period from 80 to 120 seconds with an error of less than 10%.
Keywords: fish breeding counting, image processing techniques, pattern recognition

Article Details

References

[1] Trương Quốc Bảo, Nguyễn Chánh Nghiệm, Nguyễn Minh Kha, Huỳnh Hoàng Giang, Võ Minh Trí, 2015. Developing a new computer vision algorithm for detecting and counting shrimp larvae. Hội nghị toàn quốc lần thứ 3 về Điều khiển và Tự động hóa - VCCA.

[2] Pandit A., Rangole J., 2014. Literature Review on Object Counting using Image Process-ing Techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol.3, Issue 4, pp.8509-8512

[3] Mello C. A. B., Santos W. P., Rodrigues M. A. B., Candeias A. L. B., Gusmao C. M. G., 2008. Image Segmentation of Ovitraps for Automatic Counting of Aedes Aegypti Eggs. 30th Annual International IEEE EMBS Conf. Vancouver, Bristish Columbia, Canada, pp. 3103-3106.

[4] Panmanee P., Taparhudee W., 2012. Counting Fish Fry using Digital Image Processing, Proceedings of the 50th Kasetsart University Annual Coference, Kasetsart University, Thailand, 31 January – 2 Feburary 2012. Volume 1. Subject: Animals, Veterinary Medicine, Fisheries 2012 pp.368-374 ref.3.

[5] Abdullah N. B., Rahim M. S. M., Amin I. M., 2011. Method of Measure Length of Fish from Digital Image, pp. 401-404.

[6] Võ Minh Trí, 2014. Bước đầu thiết kế chế tạo và thử nghiệm thiết bị đếm tôm giống bằng cảm biến quang. Tạp chí Khoa học Trường Đại học Cần Thơ, tr.63-68.

[7] Raman V., Perumal S., 2015. Matlab Implemenaiton Results: Detection and Counting of Young Larvae and Juvenile by Image Enhancement and Region Growing Segmentation Approach. International Journal of Soft Computing and Engineering, ISSN: 2231-2307, Volume-5 Issue-2, pp.57-65